

Jathushan Rajasegaran, Vinoj Jayasundara, Sandaru Jayasekara, Hirunima Jayasekara, Suranga Seneviratne and Ranga Rodrigo The University of Moratuwa, Sri Lanka

DeepCaps: Going Deeper with Capsule Networks

- > Stacking capsule layers is not efficient, also stacking convolutional layers causes degradation.
- > Hence, to overcome these issues, we introduce the novel CapsCell architecture.

3D CONVOLUTION BASED ROUTING

- > We use 3D convolution kernels to transform low-level capsules to higher-level capsules.
- Keeping strides equal to the number of atoms in each capsule allows to separately transform capsules to higher level, with sharing the weights.
- Multiple such kernels generate next set of capsules and a squash function squashes capsule tensors to produce the final capsules.

Algorithm 1 Dynamic Routing using 3D convolution

1: procedure ROUTING

- 2: **Require:** $\mathbf{\Phi}^{l} \in \mathbb{R}^{(w^{l}, w^{l}, c^{l}, n^{l})}$, r and c^{l+1} , n^{l+1}
- 3: $\tilde{\mathbf{\Phi}}^l \leftarrow \text{Reshape}(\Phi_l) \in \mathbb{R}^{(w^l, w^l, c^l \times n^l, 1)}$

4:
$$\mathbf{V} \leftarrow \text{Conv3D}(\tilde{\mathbf{\Phi}}^l) \in \mathbb{R}^{(w^{l+1}, w^{l+1}, c^l, c^{l+1} \times n^{l+1})}$$

5:
$$\tilde{\mathbf{V}} \leftarrow \text{Reshape}(\mathbf{V}) \in \mathbb{R}^{(w^{l+1}, w^{l+1}, n^{l+1}, c^{l+1}, c^l)}$$

6:
$$\mathbf{B} \leftarrow \mathbf{0} \in \mathbb{R}^{(w^{l+1}, w^{l+1}, c^{l+1}, c^{l})}$$

Let
$$p \in w^{l+1}, q \in w^{l+1}, r \in c^{l+1}$$
 and $s \in c^l$

for r iterations do

8: for all
$$p, q, r, k_{pqrs} \leftarrow \texttt{softmax_3D}(b_{pqrs})$$

- for all s, $S_{pqr} \leftarrow \sum_{s} k_{pqrs} \cdot V_{pqrs}$ 9:
- for all $s, \hat{S}_{pqr} \leftarrow \text{squash}_{3D}(S_{pqr})$ 10:
- for all $s, b_{pqrs} \leftarrow b_{pqrs} + \hat{S}_{pqr} \cdot \tilde{V}_{pqrs}$ 11:
- return $\mathbf{\Phi}^{l+1} = \mathbf{\hat{S}}$ 12:

- Mod

CLASS INDEPENDENT DECODER

> With the class independent decoder we can learn all the latent distributions in a constrained space. This allows us to jointly learn instantiation parameters that cause visual changes.

 \succ Due to the joint learning, we can uniquely identify the instantiation parameter that causes a particular physical change.

 \succ This allows to generate new data, with specific styles across all the classes.

> Instead of masking the vectorized instantiation parameter, we only pass the instantiation vector to the decoder.

> Not only able to identify the same variations across all the classes, high variance parameters cause global variations such as rotation, elongation, while the rest is localized variations.

Rotation (10)	9	9	9	9	9	9	9	9	9	9	9
ertical elongation (18)	9	9	9	9	9	9	9	9	9	9	9
Thickness (1)	9	9	9	9	9	9	9	9	9	9	ą
ertical expansion (30)	\mathcal{Q}	q	9	9	9	9	9	9	9	9	9
calized skewness (6)	9	9	9	9	9	9	9	9	Ŷ	Ŷ	¢

PERFORMANCE OF DEEPCAPS

lel	CIFAR 10	SVHN	F-MNIST	MNIST
eNet	96.40%	98.41%	-	-
et al.	-	-	-	99.79%
et al.	96.92%	-	96.35%	
et al.	89.40%	95.70%	-	99.75%
et al.	67.53%	91.06%	89.80%	99.50%
let	73.30%	94.50%	92.30%	99.68%
Caps	91.01%	97.16%	94.46%	99.72%
Caps mble)	92.74%	97.56%	94.73%	-

CONCLUSION

> Our DeepCaps model surpass state-of-the art accuracy on CIFAR10, SVHN and F-MNIST and achieve state-of-the results on MNIST, with 52% reduction in inference time and 61% less parameters.

> Although our results surpass the state-of-the-art performance in the domain of capsule networks, we still behind, the STOA CNNs.