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MOTIVATION

PERFORMANCE OF DEEPCAPS
Model CIFAR 10 SVHN F-MNIST MNIST

DenseNet 96.40% 98.41% - -

Wan et al. - - - 99.79%
Zhong et al. 96.92% - 96.35%
Sabour et al. 89.40% 95.70% - 99.75%

Nair et al. 67.53% 91.06% 89.80% 99.50%
HitNet 73.30% 94.50% 92.30% 99.68%

DeepCaps 91.01% 97.16% 94.46% 99.72%

DeepCaps
(7-ensemble) 92.74% 97.56% 94.73% -

DEEPCAPS ARCHITECTURE

LeNet-5 (1998)

ResNet (2015)

Going deeper in the network helps to 
understand rich features

CIFAR10, it achieves only 
89.4% with 7-ensemble.

Achieve state-of-the art 
results on MNIST (99.75%)

Low level features 
like edges and 

blobs to high level 
features

Hence, we need to go deeper in capsule networks.

Ø Stacking capsule layers is not efficient, also stacking
convolutional layers causes degradation.

Ø Hence, to overcome these issues, we introduce the
novel CapsCell architecture.

Ø Deep capsule network architecture is
build with modular building blocks of
CapsCells .

Ø A CapsCells has 4 ConvCaps
Layers with a skip connection with
element wise addition.

3D CONVOLUTION BASED ROUTING

Convolutional Neural Networks

Capsule Neural Networks (2017)

Ø When going deeper, dynamic routing is a
computationally expensive procedure.

CONCLUSION
➢ Our DeepCaps model surpass state-of-the art accuracy on

CIFAR10, SVHN and F-MNIST and achieve state-of-the
results on MNIST, with 52% reduction in inference time
and 61% less parameters.

➢ Although our results surpass the state-of-the-art
performance in the domain of capsule networks, we still
behind, the STOA CNNs.

CLASS INDEPENDENT DECODER
➢ With the class independent decoder we can learn all the

latent distributions in a constrained space. This allows us
to jointly learn instantiation parameters that cause visual
changes.

➢ Due to the joint learning, we can uniquely identify the
instantiation parameter that causes a particular physical
change.

➢ This allows to generate new data, with specific styles
across all the classes.

Rotation
(10)

Vertical elongation
(18)

Thickness
(1)

Vertical expansion
(30)

Localized skewness
(6)

Ø At the early stages of the network
we keep routing iterations to one,
and we increase it at the end of the
network.

Ø DeepCaps is followed by a class
independent decoder network, to
better regularize the training.

Ø We use 3D convolution kernels to transform low-level
capsules to higher-level capsules.

Ø Keeping strides equal to the number of atoms in each
capsule allows to separately transform capsules to higher
level, with sharing the weights.

Ø Multiple such kernels generate next set of capsules and a
squash function squashes capsule tensors to produce the
final capsules.

Ø Instead of masking the vectorized instantiation parameter,
we only pass the instantiation vector to the decoder.

Ø Not only able to identify the same variations across all the
classes, high variance parameters cause global variations
such as rotation, elongation, while the rest is localized
variations.


