
Tree-Structured Capsule Networks for Program Source Code Processing
Vinoj Jayasundara1,2, Nghi Duy Quoc Bui2, Lingxiao Jiang2, David Lo2

1A*STAR, Singapore 2School of Information Systems, Singapore Management University

MOTIVATION

TREECAPS OVERVIEW

VARIABLE TO STATIC ROUTING ALGORITHM

EXPERIMENTS AND RESULTS

● The source code of the training sample program is parsed into an AST and
vectorized with the aid of a suitable technique. (Eg :- Word2Vec)

● The vectorized AST is then fed to the proposed TreeCaps network, which
consists of :

○ Primary Variable Capsule layer
Variable to Static Routing algorithm

○ Primary Static Capsule layer
Dynamic Routing algorithm

○ Code Capsule layer

● Understanding program code is a fundamental step for many software
engineering tasks.

● The existing approaches do not explicitly learn the dependency relationships
present in source codes, hindering performance.

● We propose TreeCaps, which can automatically learn dependency
relationships with the proposed variable to static routing algorithm.

CONCLUSION

ABSTRACT SYNTAX TREE VECTORIZATION

● Every raw source code is parsed with an appropriate parser corresponding
to the programming language to generate the Abstract Syntax Tree (AST).

● We use ASTs to train the embeddings by using techniques similar to Penget
al. (2015), which learns a vectorized vocabulary of node types.

● The learned vocabulary can subsequently be used to vectorize each
individual node of the ASTs, generating the vectorized ASTs.

PRIMARY VARIABLE CAPSULE LAYER

● y corresponds to the output of one convolutional slice. We use ε such slices

with different initializations for W, b. η𝑖
𝑡, η𝑖

𝑙 , η𝑖
𝑟 are weights defined

corresponding to the depth and the position of the children nodes.

● We group the convolutional slices together to form sets of capsules with
outputs 𝑢𝑖 𝜖 ℝ

𝐷, where D is the dimensions of the capsules in the PVC layer.

● To vectorize each capsule output, we apply a non-linear squash function,
producing the output of the PVC layer.

● The key issue with passing the outputs of the PVC layer to the Code Capsule
layer is that the number of capsules vary with the training sample.

● To route capsules, we need to project them to a higher dimension with a
transformation matrix learning dependency relations, which cannot be
defined with variable dimensions. Thus, dynamic routing cannot be applied.

Solution : Proposed Variable to Static Routing Algorithm

● TreeCaps learns rich syntactical structures and semantic
dependencies in program source code.

● TreeCaps significantly outperforms the existing approaches on
program classification robustly across programming languages.

CODE CAPSULE LAYER
● This acts as the classification capsule

layer.

● Since the output of the PSC layer is a
fixed set of capsules, it can be routed
to the CC layer with dynamic routing.

● The means and the standard deviations from 3 trials are shown.

MODEL ANALYSIS

Model Dataset A (Python) Dataset B (Java) Dataset C (C)

GGNN - 85.00% 86.52%

TBCNN 99.30% 75.00% 79.40%

TreeCaps 100.00 ± 0.00% 92.11±0.90% 87.95±0.23%

TreeCaps (3-ens.) 100.00% 94.08% 89.41%

Model Variant Accuracy

Variable-to-Static Routing Algorithm → Dynamic Pooling 83.43%

Instantiation parameters → Dcc= 4 90.90%

Dcc= 8 92.10%

Dcc= 12 90.33%

Dcc= 16 91.51%

TreeCaps → TreeCaps + Secondary Capsule Layer 92.31%

TreeCaps with Variable-to-Static Routing and Dcc= 8 92.11%

● The instantiation parameters Dcc of the CC layer acts as the dimensionality of
the latent representation of source code.

Dcc ↑↑ - Sparsity and/or correlated instantiation parameters
Dcc ↓↓ - Under-representation

𝐓𝐫𝐞𝐞 − 𝐁𝐚𝐬𝐞𝐝 𝐂𝐨𝐧𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 𝒚 = 𝑡𝑎𝑛ℎ(෍

𝑖=1

𝐾+1

η𝑖
𝑡𝑾𝑡 + η𝑖

𝑙𝑾𝑙 + η𝑖
𝑟𝑾𝑟 𝒙𝑖 + 𝒃)

