
TreeCaps : Tree-Structured Capsule Networks for
Program Source Code Processing

Presented by Vinoj Jayasundara

Software Intelligence Group

December 1, 2019

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 1 / 22

Presentation Outline

1 Introduction to Capsule Networks

2 Methodology

3 Task : Program Classification

4 Limitations and Future Work

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 2 / 22

Capsule Network : Instantiation parameters

Capsule Networks can encode any entity in instantiation parameters.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 3 / 22

Capsule Network : Routing by agreement

Capsule Networks propose a novel routing by agreement algorithm.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 4 / 22

Presentation Outline

1 Introduction to Capsule Networks

2 Methodology

3 Task : Program Classification

4 Limitations and Future Work

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 5 / 22

TreeCaps Overview

• The source code of the training sample program is parsed into an AST
and vectorized with the aid of a suitable technique. (Eg :- Word2Vec)

• The vectorized AST is then fed to the proposed TreeCaps network,
which consists of :
X Primary Variable Capsule layer

l Variable to Static Routing algorithm
X Primary Static Capsule layer

l Dynamic Routing algorithm
X Code Capsule layer

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 6 / 22

TreeCaps Overview

• The source code of the training sample program is parsed into an AST
and vectorized with the aid of a suitable technique. (Eg :- Word2Vec)

• The vectorized AST is then fed to the proposed TreeCaps network,
which consists of :
X Primary Variable Capsule layer

l Variable to Static Routing algorithm
X Primary Static Capsule layer

l Dynamic Routing algorithm
X Code Capsule layer

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 6 / 22

Abstract Syntax Tree Vectorization

• Every raw source code is parsed with an appropriate parser correspond-
ing to the programming language to generate the AST1.

• We use ASTs to train the embeddings by using techniques similar to
Penget al. (2015), which learns a vectorized vocabulary of node types.

• The learned vocabulary can subsequently be used to vectorize each
individual nodeof the ASTs, generating the vectorized ASTs.

1Python - Python AST parser, C & Java - srcML
Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 7 / 22

Abstract Syntax Tree Vectorization

• Every raw source code is parsed with an appropriate parser correspond-
ing to the programming language to generate the AST1.

• We use ASTs to train the embeddings by using techniques similar to
Penget al. (2015), which learns a vectorized vocabulary of node types.

• The learned vocabulary can subsequently be used to vectorize each
individual nodeof the ASTs, generating the vectorized ASTs.

1Python - Python AST parser, C & Java - srcML
Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 7 / 22

Abstract Syntax Tree Vectorization

• Every raw source code is parsed with an appropriate parser correspond-
ing to the programming language to generate the AST1.

• We use ASTs to train the embeddings by using techniques similar to
Penget al. (2015), which learns a vectorized vocabulary of node types.

• The learned vocabulary can subsequently be used to vectorize each
individual nodeof the ASTs, generating the vectorized ASTs.

1Python - Python AST parser, C & Java - srcML
Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 7 / 22

TreeCaps : Tree Structured Convolution

• One of the main challenges in creating a tree-based capsule network is
that the input of the network is tree-structured.

X Image data ∈ RH×W×C , where H,W ,C are fixed.
X Natural language data ∈ RL×E , where L,E are the fixed.
× Tree-structured data ∈ RT×V , where T is dynamic.

• A further challenge is that the # of children varies from node to node.

Solutions :
• Zero padding ?
• Tree-based Convolution better

y = tanh(
K+1∑
i=1

[ηti W
t + ηliW

l + ηri W
r]xi + b) (1)

ηti , η
l
i , η

r
i are weights defined corresponding to the depth and

the position of the children nodes, and Yconv ∈ RT×V ′
.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 8 / 22

TreeCaps : Tree Structured Convolution

• One of the main challenges in creating a tree-based capsule network is
that the input of the network is tree-structured.

X Image data ∈ RH×W×C , where H,W ,C are fixed.
X Natural language data ∈ RL×E , where L,E are the fixed.
× Tree-structured data ∈ RT×V , where T is dynamic.

• A further challenge is that the # of children varies from node to node.

Solutions :
• Zero padding ?
• Tree-based Convolution better

y = tanh(
K+1∑
i=1

[ηti W
t + ηliW

l + ηri W
r]xi + b) (1)

ηti , η
l
i , η

r
i are weights defined corresponding to the depth and

the position of the children nodes, and Yconv ∈ RT×V ′
.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 8 / 22

TreeCaps : Tree Structured Convolution

• One of the main challenges in creating a tree-based capsule network is
that the input of the network is tree-structured.

X Image data ∈ RH×W×C , where H,W ,C are fixed.
X Natural language data ∈ RL×E , where L,E are the fixed.
× Tree-structured data ∈ RT×V , where T is dynamic.

• A further challenge is that the # of children varies from node to node.

Solutions :
• Zero padding ?

• Tree-based Convolution better

y = tanh(
K+1∑
i=1

[ηti W
t + ηliW

l + ηri W
r]xi + b) (1)

ηti , η
l
i , η

r
i are weights defined corresponding to the depth and

the position of the children nodes, and Yconv ∈ RT×V ′
.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 8 / 22

TreeCaps : Tree Structured Convolution

• One of the main challenges in creating a tree-based capsule network is
that the input of the network is tree-structured.

X Image data ∈ RH×W×C , where H,W ,C are fixed.
X Natural language data ∈ RL×E , where L,E are the fixed.
× Tree-structured data ∈ RT×V , where T is dynamic.

• A further challenge is that the # of children varies from node to node.

Solutions :
• Zero padding ?
• Tree-based Convolution better

y = tanh(
K+1∑
i=1

[ηti W
t + ηliW

l + ηri W
r]xi + b) (1)

ηti , η
l
i , η

r
i are weights defined corresponding to the depth and

the position of the children nodes, and Yconv ∈ RT×V ′
.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 8 / 22

TreeCaps : Primary Variable TreeCaps Layer

• y obtained from Eq 1 corresponds to the output of one convolutional
slice. We use ε such slices with different initializations for W,b.

• We group the convolutional slices together to form Npvc = T×V ′×ε
Dpvc

sets of capsules with outputs ui ∈ RDpvc , i ∈ [1,Npvc] , where Dpvc is
the dimensions of the capsules in the PVC layer.

• To vectorize each capsule output, we subsequently apply a non-linear
squash function, producing the output of the PVC layer ∈ RNpvc×Dpvc .

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 9 / 22

TreeCaps : Primary Variable TreeCaps Layer

• y obtained from Eq 1 corresponds to the output of one convolutional
slice. We use ε such slices with different initializations for W,b.

• We group the convolutional slices together to form Npvc = T×V ′×ε
Dpvc

sets of capsules with outputs ui ∈ RDpvc , i ∈ [1,Npvc] , where Dpvc is
the dimensions of the capsules in the PVC layer.

• To vectorize each capsule output, we subsequently apply a non-linear
squash function, producing the output of the PVC layer ∈ RNpvc×Dpvc .

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 9 / 22

TreeCaps : Primary Variable TreeCaps Layer

• y obtained from Eq 1 corresponds to the output of one convolutional
slice. We use ε such slices with different initializations for W,b.

• We group the convolutional slices together to form Npvc = T×V ′×ε
Dpvc

sets of capsules with outputs ui ∈ RDpvc , i ∈ [1,Npvc] , where Dpvc is
the dimensions of the capsules in the PVC layer.

• To vectorize each capsule output, we subsequently apply a non-linear
squash function, producing the output of the PVC layer ∈ RNpvc×Dpvc .

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 9 / 22

TreeCaps : Primary Static TreeCaps Layer

• The key issue with passing the outputs of the PVC layer to the Code
Capsule layer is that Npvc is variable with the training sample.

• Prior to routing the lower level capsules to a set of higher level capsules,
the lower dimensional capsule outputs need to be projected to the
higher dimensionality, with a transformation matrix which learns the
part-whole relationship between the lower and the higher level capsules.

• However, a trainable transformation matrix cannot be defined in prac-
tice with variable dimensions. Thus, the dynamic routing in cannot be
applied here.

Solution : Proposed Variable to Static Routing Algorithm

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 10 / 22

TreeCaps : Primary Static TreeCaps Layer

• The key issue with passing the outputs of the PVC layer to the Code
Capsule layer is that Npvc is variable with the training sample.

• Prior to routing the lower level capsules to a set of higher level capsules,
the lower dimensional capsule outputs need to be projected to the
higher dimensionality, with a transformation matrix which learns the
part-whole relationship between the lower and the higher level capsules.

• However, a trainable transformation matrix cannot be defined in prac-
tice with variable dimensions. Thus, the dynamic routing in cannot be
applied here.

Solution : Proposed Variable to Static Routing Algorithm

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 10 / 22

TreeCaps : Primary Static TreeCaps Layer

• The key issue with passing the outputs of the PVC layer to the Code
Capsule layer is that Npvc is variable with the training sample.

• Prior to routing the lower level capsules to a set of higher level capsules,
the lower dimensional capsule outputs need to be projected to the
higher dimensionality, with a transformation matrix which learns the
part-whole relationship between the lower and the higher level capsules.

• However, a trainable transformation matrix cannot be defined in prac-
tice with variable dimensions. Thus, the dynamic routing in cannot be
applied here.

Solution : Proposed Variable to Static Routing Algorithm

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 10 / 22

TreeCaps : Primary Static TreeCaps Layer

• The key issue with passing the outputs of the PVC layer to the Code
Capsule layer is that Npvc is variable with the training sample.

• Prior to routing the lower level capsules to a set of higher level capsules,
the lower dimensional capsule outputs need to be projected to the
higher dimensionality, with a transformation matrix which learns the
part-whole relationship between the lower and the higher level capsules.

• However, a trainable transformation matrix cannot be defined in prac-
tice with variable dimensions. Thus, the dynamic routing in cannot be
applied here.

Solution : Proposed Variable to Static Routing Algorithm

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 10 / 22

TreeCaps : Variable to Static Routing Algorithm

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 11 / 22

TreeCaps : Variable to Static Routing Algorithm

• Often, source code consists of non-essential entities, and only a portion
of all entities determine the code class.

• ||Capsule output||2 ∝ Prob. of existence.

• Dependency relationships may exist among entities that are not spa-
tially co-located.

• Routing by agreement ↑ · ↑= (+) ↑ · →= (0) ↑ · ↓= (−).

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 12 / 22

TreeCaps : Variable to Static Routing Algorithm

• Often, source code consists of non-essential entities, and only a portion
of all entities determine the code class.

• ||Capsule output||2 ∝ Prob. of existence.

• Dependency relationships may exist among entities that are not spa-
tially co-located.

• Routing by agreement ↑ · ↑= (+) ↑ · →= (0) ↑ · ↓= (−).

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 12 / 22

TreeCaps : Variable to Static Routing Algorithm

• Often, source code consists of non-essential entities, and only a portion
of all entities determine the code class.

• ||Capsule output||2 ∝ Prob. of existence.

• Dependency relationships may exist among entities that are not spa-
tially co-located.

• Routing by agreement ↑ · ↑= (+) ↑ · →= (0) ↑ · ↓= (−).

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 12 / 22

TreeCaps : Variable to Static Routing Algorithm

• Often, source code consists of non-essential entities, and only a portion
of all entities determine the code class.

• ||Capsule output||2 ∝ Prob. of existence.

• Dependency relationships may exist among entities that are not spa-
tially co-located.

• Routing by agreement ↑ · ↑= (+) ↑ · →= (0) ↑ · ↓= (−).

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 12 / 22

TreeCaps : Code Capsule Layer

• Code Capsule layer is the final layer of the TreeCaps network, which
acts as the classification capsule layer.

• Since the output of the PSC layer is a fixed set of capsules, it can be
routed to the CC layer with dynamic routing.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 13 / 22

TreeCaps : Code Capsule Layer

• Code Capsule layer is the final layer of the TreeCaps network, which
acts as the classification capsule layer.

• Since the output of the PSC layer is a fixed set of capsules, it can be
routed to the CC layer with dynamic routing.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 13 / 22

TreeCaps : Margin Loss

• For every code capsule µ, the margin loss Lµ is defined as follows,

Lµ = Tµ max(0,m+ − ‖vµ‖)2 + λ(1− Tµ) max(0, ‖vµ‖ −m−)2

(2)

• Tµ is 1 if the correct class is µ and zero otherwise.

• λ is set to 0.5 to control the initial learning from shrinking the length
of the output vectors of all the code capsules.

• m+,m− are set to 0.9, 0.1 as the lower bound for the correct class
and the upper bound for the incorrect class respectively.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 14 / 22

Presentation Outline

1 Introduction to Capsule Networks

2 Methodology

3 Task : Program Classification

4 Limitations and Future Work

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 15 / 22

Datasets

• Dataset A : Python 6 classes of sorting algorithms, with 346 training
programs on average per class.

• Dataset B : Java 10 classes of sorting algorithms, with 64 training
programs on average per class.

• Dataset C : C 104 classes, with 375 training programs on average
per class.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 16 / 22

Quantitative Results

• The means and the standard deviations from 3 trials are shown.

Model Dataset A Dataset B Dataset C

GGNN - 85.00% 86.52%
TBCNN 99.30% 75.00% 79.40%

TreeCaps 100.00± 0.00% 92.11± 0.90% 87.95± 0.23%
TreeCaps (3-ens.) 100.00% 94.08% 89.41%

• We followed the techniques proposed in Allamanis et al. and BUI et
al. to re-generate the results for GGNN and the techniques proposed
in Mou et al. to re-generate the results for TBCNN.

• Why Mou et al. reports a higher performance for Dataset C than us?
X Custom-trained initial embeddings
X A small set of AST node types defined specifically for C language only

• For a fairer comparison (B & C), we used general embeddings based
on srcML node vocabulary as the initial embeddings across all models.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 17 / 22

Quantitative Results

• The means and the standard deviations from 3 trials are shown.

Model Dataset A Dataset B Dataset C

GGNN - 85.00% 86.52%
TBCNN 99.30% 75.00% 79.40%

TreeCaps 100.00± 0.00% 92.11± 0.90% 87.95± 0.23%
TreeCaps (3-ens.) 100.00% 94.08% 89.41%

• We followed the techniques proposed in Allamanis et al. and BUI et
al. to re-generate the results for GGNN and the techniques proposed
in Mou et al. to re-generate the results for TBCNN.

• Why Mou et al. reports a higher performance for Dataset C than us?
X Custom-trained initial embeddings
X A small set of AST node types defined specifically for C language only

• For a fairer comparison (B & C), we used general embeddings based
on srcML node vocabulary as the initial embeddings across all models.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 17 / 22

Quantitative Results

• The means and the standard deviations from 3 trials are shown.

Model Dataset A Dataset B Dataset C

GGNN - 85.00% 86.52%
TBCNN 99.30% 75.00% 79.40%

TreeCaps 100.00± 0.00% 92.11± 0.90% 87.95± 0.23%
TreeCaps (3-ens.) 100.00% 94.08% 89.41%

• We followed the techniques proposed in Allamanis et al. and BUI et
al. to re-generate the results for GGNN and the techniques proposed
in Mou et al. to re-generate the results for TBCNN.

• Why Mou et al. reports a higher performance for Dataset C than us?
X Custom-trained initial embeddings
X A small set of AST node types defined specifically for C language only

• For a fairer comparison (B & C), we used general embeddings based
on srcML node vocabulary as the initial embeddings across all models.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 17 / 22

Quantitative Results

• The means and the standard deviations from 3 trials are shown.

Model Dataset A Dataset B Dataset C

GGNN - 85.00% 86.52%
TBCNN 99.30% 75.00% 79.40%

TreeCaps 100.00± 0.00% 92.11± 0.90% 87.95± 0.23%
TreeCaps (3-ens.) 100.00% 94.08% 89.41%

• We followed the techniques proposed in Allamanis et al. and BUI et
al. to re-generate the results for GGNN and the techniques proposed
in Mou et al. to re-generate the results for TBCNN.

• Why Mou et al. reports a higher performance for Dataset C than us?
X Custom-trained initial embeddings
X A small set of AST node types defined specifically for C language only

• For a fairer comparison (B & C), we used general embeddings based
on srcML node vocabulary as the initial embeddings across all models.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 17 / 22

Model Analysis

Model Variant Accuracy

Variable-to-Static Routing Algorithm → Dynamic Pooling 83.43%
Instantiation parameters → Dcc = 4 90.90%

Dcc = 8 92.10%
Dcc = 12 90.33%
Dcc = 16 91.51%

TreeCaps → TreeCaps + Secondary Capsule Layer 92.31%

TreeCaps with Variable-to-Static Routing and Dcc = 8 92.11%

• Dynamic max pooling is bad for capsule networks, as it destroys
spatial/dependency relationships.

• The instantiation parameters Dcc of the CC layer acts as the
dimensionality of the latent representation of source code.
Dcc ↑↑ - Sparsity and/or correlated instantiation parameters
Dcc ↓↓ - Under-representation

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 18 / 22

Model Analysis

Model Variant Accuracy

Variable-to-Static Routing Algorithm → Dynamic Pooling 83.43%
Instantiation parameters → Dcc = 4 90.90%

Dcc = 8 92.10%
Dcc = 12 90.33%
Dcc = 16 91.51%

TreeCaps → TreeCaps + Secondary Capsule Layer 92.31%

TreeCaps with Variable-to-Static Routing and Dcc = 8 92.11%

• Dynamic max pooling is bad for capsule networks, as it destroys
spatial/dependency relationships.

• The instantiation parameters Dcc of the CC layer acts as the
dimensionality of the latent representation of source code.
Dcc ↑↑ - Sparsity and/or correlated instantiation parameters
Dcc ↓↓ - Under-representation

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 18 / 22

Presentation Outline

1 Introduction to Capsule Networks

2 Methodology

3 Task : Program Classification

4 Limitations and Future Work

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 19 / 22

Limitations

• Limitations inherited from capsule networks

× High computational complexity in comparison to CNNs.

× Relative performance reduction with the increasing number of classes.

• TreeCaps lacks a decoder network, due to which

× We loose a lot of interpretability.

× We cannot study the relationship between the learnt instantiation
parameters and the physical attributes of data.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 20 / 22

Limitations

• Limitations inherited from capsule networks

× High computational complexity in comparison to CNNs.

× Relative performance reduction with the increasing number of classes.

• TreeCaps lacks a decoder network, due to which

× We loose a lot of interpretability.

× We cannot study the relationship between the learnt instantiation
parameters and the physical attributes of data.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 20 / 22

Future Work

• Investigate the extent to which TreeCaps can actually capture the de-
pendency relationships of ASTs. How?

X Integrate a back-tracking mechanism after a forward pass with the test
case.

X For a given primary static capsule, the primary variable capsules con-
nected to it with φ-highest coupling coefficients are considered to have
dependency relationships.

X We subsequently compare related pieces of code identified by TreeCaps
to program dependencies identified by program analysis techniques.

• Evaluate the effectiveness of TreeCaps as an embedding generating
technique.

• Extend TreeCaps to other related tasks such as bug detection and
localization.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 21 / 22

Future Work

• Investigate the extent to which TreeCaps can actually capture the de-
pendency relationships of ASTs. How?

X Integrate a back-tracking mechanism after a forward pass with the test
case.

X For a given primary static capsule, the primary variable capsules con-
nected to it with φ-highest coupling coefficients are considered to have
dependency relationships.

X We subsequently compare related pieces of code identified by TreeCaps
to program dependencies identified by program analysis techniques.

• Evaluate the effectiveness of TreeCaps as an embedding generating
technique.

• Extend TreeCaps to other related tasks such as bug detection and
localization.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 21 / 22

Future Work

• Investigate the extent to which TreeCaps can actually capture the de-
pendency relationships of ASTs. How?

X Integrate a back-tracking mechanism after a forward pass with the test
case.

X For a given primary static capsule, the primary variable capsules con-
nected to it with φ-highest coupling coefficients are considered to have
dependency relationships.

X We subsequently compare related pieces of code identified by TreeCaps
to program dependencies identified by program analysis techniques.

• Evaluate the effectiveness of TreeCaps as an embedding generating
technique.

• Extend TreeCaps to other related tasks such as bug detection and
localization.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 21 / 22

Future Work

• Investigate the extent to which TreeCaps can actually capture the de-
pendency relationships of ASTs. How?

X Integrate a back-tracking mechanism after a forward pass with the test
case.

X For a given primary static capsule, the primary variable capsules con-
nected to it with φ-highest coupling coefficients are considered to have
dependency relationships.

X We subsequently compare related pieces of code identified by TreeCaps
to program dependencies identified by program analysis techniques.

• Evaluate the effectiveness of TreeCaps as an embedding generating
technique.

• Extend TreeCaps to other related tasks such as bug detection and
localization.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 21 / 22

Future Work

• Investigate the extent to which TreeCaps can actually capture the de-
pendency relationships of ASTs. How?

X Integrate a back-tracking mechanism after a forward pass with the test
case.

X For a given primary static capsule, the primary variable capsules con-
nected to it with φ-highest coupling coefficients are considered to have
dependency relationships.

X We subsequently compare related pieces of code identified by TreeCaps
to program dependencies identified by program analysis techniques.

• Evaluate the effectiveness of TreeCaps as an embedding generating
technique.

• Extend TreeCaps to other related tasks such as bug detection and
localization.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 21 / 22

Future Work

• Investigate the extent to which TreeCaps can actually capture the de-
pendency relationships of ASTs. How?

X Integrate a back-tracking mechanism after a forward pass with the test
case.

X For a given primary static capsule, the primary variable capsules con-
nected to it with φ-highest coupling coefficients are considered to have
dependency relationships.

X We subsequently compare related pieces of code identified by TreeCaps
to program dependencies identified by program analysis techniques.

• Evaluate the effectiveness of TreeCaps as an embedding generating
technique.

• Extend TreeCaps to other related tasks such as bug detection and
localization.

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 21 / 22

Supplementary

This work was accepted to be presented at NeurIPS workshops this year!

Thank you!

Vinoj Jayasundara TreeCaps : Tree-Structured Capsule Networks for Program Source Code ProcessingDecember 1, 2019 22 / 22

	Introduction to Capsule Networks
	Methodology
	Task : Program Classification
	Limitations and Future Work

