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Capsule Network : Instantiation parameters

Capsule Networks can encode any entity in instantiation
parameters.



Capsule Network : Routing by agreement

Capsule Networks propose a novel routing by agreement algorithm.



Capsule Network : Decoder Network

Instantiation parameters can be used to reconstruct the entity back
using a decoder network.



Motivation

• Necessity of huge datasets for deep learning

• Localized languages cannot reap the benefits of deep learning
due to the lack of sufficient data.



Existing Solutions

• Data augmentation (jittering, flipping): Too Simple variations

• GANs [1]: Need a GAN per each class, still not effective

• VAEs [2]: High susceptibility of generating wrongly labelled
data

All of these are unable to attain realistic new data generation. Our
Task - A novel data generation technique with high controllability,
which can generate data with less cost, while producing realistic
outputs.
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Problem Definition

• Training with very small datasets (200 training samp/class)
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Problem Definition

• Results in,

• Two main issues identified

1 The reconstructed images are blurry

2 The subtle variations in the characters are not properly
captured



Decoder Re-training Technique

• Decoder Re-training
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Data Generation Technique

• Perturbation of instantiation Parameters can generate
human-like variations

• Uncontrolled perturbation can cause distortions

1 Visually unrecognizable images

2 Class jumps
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Data Generation Technique

• New image data generation
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Performance

• We use five benchmark datasets to evaluate our system

EMNIST-Letters

Implementation With full train set With 200 samp/class

Cohen et al. [1] 85.15% -
Wiyatnoet al.[2] 91.27% -

TextCaps 95.36 ± 0.30% 92.79 ± 0.30%

EMNIST-Balanced

Implementation With full train set With 200 samp/class

Cohen et al. [1] 78.02% -
Dufourq et al. [3] 88.3% -

TextCaps 90.46 ± 0.22% 87.82 ± 0.25%

EMNIST-Digits

Implementation With full train set With 200 samp/class

Cohen et al. [1] 95.90% -
Dufourq et al. [3] 99.3% -

TextCaps 99.79 ± 0.11% 98.96 ± 0.22%



Performance

MNIST

Implementation With full train set With 200 samp/class

Sabour et al. [4] 99.75% -
Cireşan et al. [5] 99.77% -
Wan et al. [6] 99.79% -

TextCaps 99.71 ± 0.18% 98.68 ± 0.30%

Fashion MNIST

Implementation With full train set With 200 samp/class

Xiao et al. [7] 89.7% -
Bhatnagar et al. [8] 92.54% -
Zhong et al. [9] 96.35% -

TextCaps 93.71 ± 0.64% 85.36 ± 0.79%



Loss Function Analysis

• Loss function of the decoder has a direct impact on the
Reconstruction performance
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In Conclusion

In TextCaps, we present a novel system which consists of decoder
re-training and data generation techniques, which creates

• Images more realistic than existing techniques

• Starting from a very low amount of data

• Generate images as much as necessary

• Without any user interaction or post-processing
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