

TextCaps : Handwritten Character Recognition with Very Small Datasets

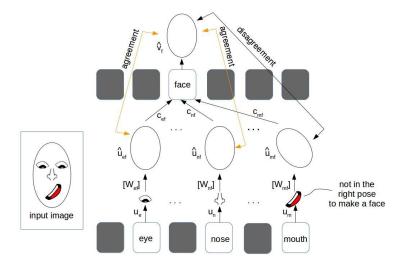
Vinoj Jayasundara, Sandaru Jayasekara, Hirunima Jayasekara, Jathushan Rajasegaran, Suranga Seneviratne* and Ranga Rodrigo

University of Moratuwa,*University of Sydney

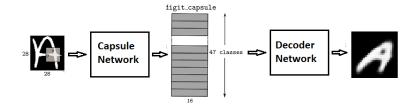
WACV 2019 January 08, 2019

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Capsule Network : Instantiation parameters


Capsule Networks can encode any entity in instantiation parameters.

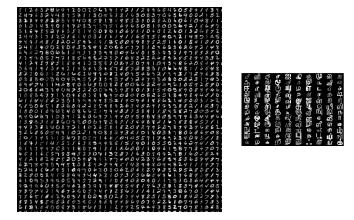
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()


Capsule Network : Routing by agreement

Capsule Networks propose a novel routing by agreement algorithm.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Instantiation parameters can be used to reconstruct the entity back using a decoder network.



・ロト ・ 四ト ・ ヨト ・ ヨト …

3

Motivation

· Necessity of huge datasets for deep learning

• Localized languages cannot reap the benefits of deep learning due to the lack of sufficient data.

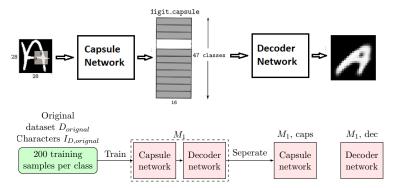
Existing Solutions

- Data augmentation (jittering, flipping): Too Simple variations
- GANs [1]: Need a GAN per each class, still not effective
- VAEs [2]: High susceptibility of generating wrongly labelled data

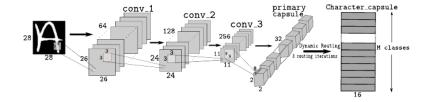
All of these are unable to attain realistic new data generation. Our Task - A novel data generation technique with high controllability, which can generate data with less cost, while producing realistic outputs.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

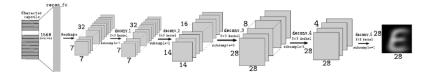
Existing Solutions


- Data augmentation (jittering, flipping): Too Simple variations
- GANs [1]: Need a GAN per each class, still not effective
- VAEs [2]: High susceptibility of generating wrongly labelled data

All of these are unable to attain realistic new data generation. Our Task - A novel data generation technique with high controllability, which can generate data with less cost, while producing realistic outputs.


222222333333 NNNNNNNNNNN

Problem Definition


• Training with very small datasets (200 training samp/class)

Problem Definition

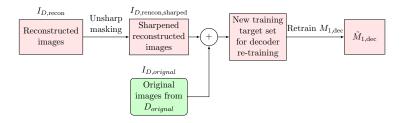
Capsule Network

Decoder Network

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Problem Definition

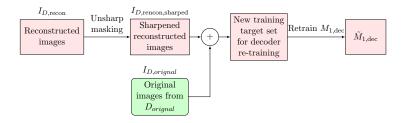
Results in,



- Two main issues identified
 - 1 The reconstructed images are blurry
 - 2 The subtle variations in the characters are not properly captured

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Decoder Re-training Technique


• Decoder Re-training

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Decoder Re-training Technique

• Decoder Re-training

Results in,

Original image

Reconstructed image

After decoder re-training

• Perturbation of instantiation Parameters can generate human-like variations

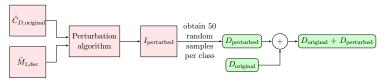
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Perturbation of instantiation Parameters can generate human-like variations

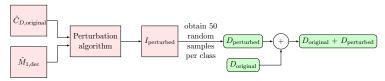
- Uncontrolled perturbation can cause distortions
 - 1 Visually unrecognizable images

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Perturbation of instantiation Parameters can generate human-like variations



- Uncontrolled perturbation can cause distortions
 - 1 Visually unrecognizable images


2 Class jumps

• New image data generation

• New image data generation

Results in,

Original image

Trained with original dataset

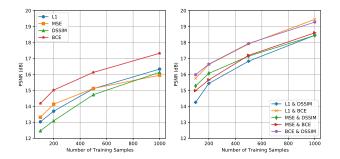
Trained with generated dataset

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Performance

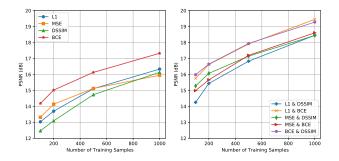
• We use five benchmark datasets to evaluate our system


EMNIST-Letters			
Implementation	With full train set	With 200 samp/class	
Cohen <i>et al.</i> [1]	85.15%	-	
Wiyatno <i>et al.</i> [2]	91.27%	-	
TextCaps	$\textbf{95.36} \pm \textbf{0.30\%}$	$\textbf{92.79} \pm \textbf{0.30\%}$	
EMNIST-Balanced			
Implementation	With full train set	With 200 samp/class	
Cohen <i>et al.</i> [1]	78.02%	-	
Dufourq et al. [3]	88.3%	-	
TextCaps	$\textbf{90.46} \pm \textbf{0.22\%}$	$87.82 \pm 0.25\%$	
EMNIST-Digits			
Implementation	With full train set	With 200 samp/class	
Cohen <i>et al.</i> [1]	95.90%	-	
Dufourq et al. [3]	99.3%	-	
TextCaps	$\textbf{99.79} \pm \textbf{0.11\%}$	$98.96 \pm 0.22\%$	

Performance

MNIST			
Implementation	With full train set	With 200 samp/class	
Sabour <i>et al.</i> [4]	99.75%	-	
Cireșan <i>et al.</i> [5]	99.77%	-	
Wan <i>et al.</i> [6]	99.79%	-	
TextCaps	$99.71 \pm 0.18\%$	$98.68 \pm 0.30\%$	
Fashion MNIST			
Implementation	With full train set	With 200 samp/class	
Xiao et al. [7]	89.7%	-	
Bhatnagar <i>et al.</i> [8]	92.54%	-	
Zhong <i>et al.</i> [9]	96.35%	-	
TextCaps	$93.71 \pm 0.64\%$	$85.36 \pm 0.79\%$	

Loss Function Analysis


• Loss function of the decoder has a direct impact on the Reconstruction performance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Loss Function Analysis

• Loss function of the decoder has a direct impact on the Reconstruction performance

In Conclusion

In TextCaps, we present a novel system which consists of decoder re-training and data generation techniques, which creates

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Images more realistic than existing techniques
- Starting from a very low amount of data
- Generate images as much as necessary
- Without any user interaction or post-processing

Thank You!

Paper ID : 535 Poster Session : Tuesday 19:30 - 22:00 @ Kona 1-3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: an extension of MNIST to handwritten letters. CoRR (2017)

Wiyatno, R., Orchard, J.:

Style memory: Making a classifier network generative. CoRR (2018)

 Dufourq, E., Bassett, B.A.:
 Eden: Evolutionary deep networks for efficient machine learning.
 In: PRASA-RobMech, Bloemfontein, South Africa (2017)

110-115

- Sabour, S., Frosst, N., Hinton, G.E.:
 Dynamic routing between capsules.
 In: NIPS, Long Beach, CA (2017) 3856–3866
- Ciresan, D.C., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. CoRR (2012)

Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using dropconnect. ICML 28 (2013) 1058–1066

Xiao, H., Rasul, K., Vollgraf, R.:

Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. CoRR (2017)

 Bhatnagar, S., Ghosal, D., Kolekar, M.H.: Classification of fashion article images using convolutional neural networks.
 In: ICIIP, Shimla, India (2017) 1–6

Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. CoRR (2017)