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Capsule Network : Instantiation parameters

Capsule Networks can encode any entity in instantiation
parameters.
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Capsule Network : Routing by agreement

Capsule Networks propose a novel routing by agreement algorithm.
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Capsule Network : Decoder Network

Instantiation parameters can be used to reconstruct the entity back
using a decoder network.
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e Necessity of huge datasets for deep learn
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e Localized Ianguages cannot reap the benefits of deep learning
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Existing Solutions

e Data augmentation (jittering, flipping): Too Simple variations
e GANs [1]: Need a GAN per each class, still not effective

e VAEs [2]: High susceptibility of generating wrongly labelled
data

All of these are unable to attain realistic new data generation. Our
Task - A novel data generation technique with high controllability,
which can generate data with less cost, while producing realistic
outputs.
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Problem Definition

e Training with very small datasets (200 training samp/class)
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Problem Definition
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Problem Definition

e Results in,

elR

e Two main issues identified

@ The reconstructed images are blurry

@ The subtle variations in the characters are not properly
captured



Decoder Re-training Technique

e Decoder Re-training
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Decoder Re-training Technique

e Decoder Re-training
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Data Generation Technique

e Perturbation of instantiation Parameters can generate
human-like variations
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Data Generation Technique

e Perturbation of instantiation Parameters can generate
human-like variations
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e Uncontrolled perturbation can cause distortions
@ Visually unrecognizable images
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Data Generation Technique

e Perturbation of instantiation Parameters can generate
human-like variations
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e Uncontrolled perturbation can cause distortions
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Data Generation Technique

e New image data generation
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Data Generation Technique

e New image data generation
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Performance

e We use five benchmark datasets to evaluate our system

EMNIST-Letters

Implementation

With full train set

With 200 samp/class

Cohen et al. [1]
Wiyatnoet al.[2]

85.15%
91.27%

TextCaps

95.36 + 0.30%

92.79 + 0.30%

EMNIST-Balanced

Implementation

With full train set

With 200 samp/class

Cohen et al. [1] 78.02% -

Dufourq et al. [3] 88.3% -
TextCaps 90.46 + 0.22% 87.82 + 0.25%
EMNIST-Digits
Implementation With full train set With 200 samp/class
Cohen et al. [1] 95.90% -

Dufourq et al. [3] 99.3%

TextCaps

99.79 + 0.11%

98.96 + 0.22%




Performance

MNIST
Implementation With full train set With 200 samp/class
Sabour et al. [4] 99.75% -
Ciresan et al. [5] 99.77% -
Wan et al. [6] 99.79% -
TextCaps 99.71 £+ 0.18% 98.68 + 0.30%

Fashion MNIST

Implementation

With full train set

With 200 samp/class

Xiao et al. [7]
Bhatnagar et al. [8]
Zhong et al. [9]

89.7%
92.54%
96.35%

TextCaps

93.71 £+ 0.64%

85.36 + 0.79%




Loss Function Analysis

e Loss function of the decoder has a direct impact on the
Reconstruction performance
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Loss Function Analysis

e Loss function of the decoder has a direct impact on the
Reconstruction performance
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In Conclusion

In TextCaps, we present a novel system which consists of decoder
re-training and data generation techniques, which creates

e Images more realistic than existing techniques
e Starting from a very low amount of data
e Generate images as much as necessary

e Without any user interaction or post-processing
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