

FlowCaps: Optical Flow Estimation with Capsule Networks For Action Recognition

Vinoj Jayasundara

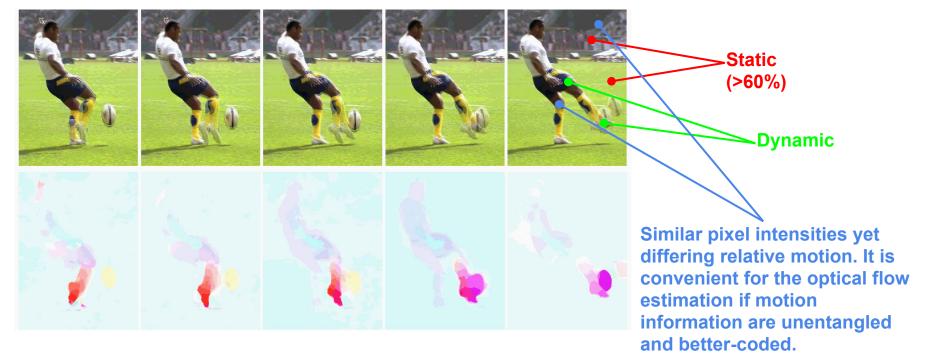
Debaditya Roy

Basura Fernando

- 1. Overview
- 2. Key Contributions
- 3. FlowCaps: Architecture
- 4. Key Approaches
- 5. Experiments and Results
- 6. Capabilities of FlowCaps

Overview: The need for a Capsule Encoder

Observation: Raw pixels contain sparse motion information, cluttered with non-motion information.



Overview: The need for a Capsule Encoder

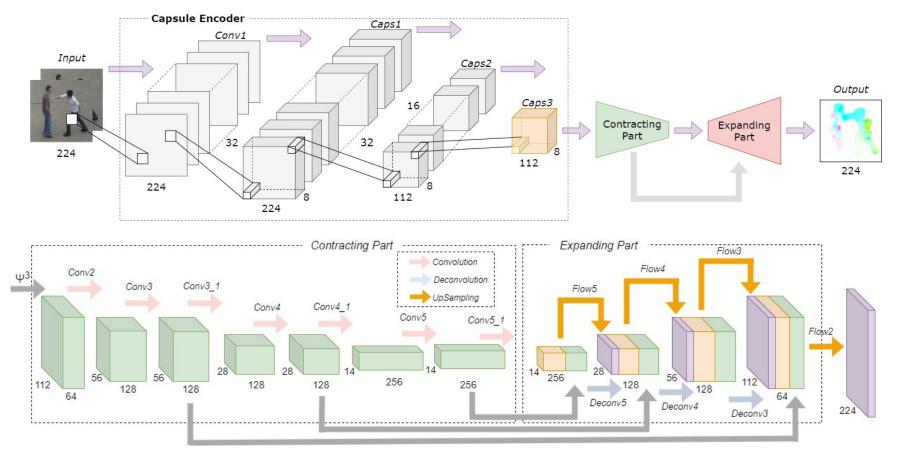
- Observation: Raw pixels contain sparse motion information, cluttered with non-motion information.
- Potential Solution: A capsule encoder, which provides the following:
 - a) better correspondence matching via finer-grained, concise, motion-specific, and more-interpretable encoding crucial for optical flow estimation
 - b) better-generalizable optical flow estimation
 - c) utilize lesser ground truth data
 - d) significantly reduce the computational complexity

In comparison to the convolutional encoder in FlowNet.

Key Contributions

- Proposing a novel CapsNet based architecture, termed FlowCaps.
- Investigating two contrasting approaches for optical flow estimation and action recognition, namely, frame-wise and segment-wise.
- Achieving a significant (94%) reduction in computational complexity with FlowCaps, in comparison to FlowNet.
- Achieving better optical flow estimation and subsequent action recognition performance for several benchmark datasets.
- Investigating the capabilities of Flow-Caps in terms of out-of-domain generalization and training with only a few samples.

FlowCaps: Architecture

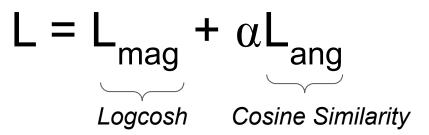


Key Approaches: Improvements to Loss

• Issues with EPE:

× Only considers the magnitude component in its calculations
× L2 norm is highly susceptible to outliers with higher values

• We propose:



Where α is an empirically determined constant.

Key Approaches: Segment-wise vs Frame-wise

- We consider two different approaches based on the number of consecutive frames (k) considered for prediction at a time.
 - a) Frame-wise (k=2) $X_{frm} \in \mathbb{R}^{(H \times W \times 2C)} \rightarrow Y_{frm} \in \mathbb{R}^{(H \times W \times 2)}$
 - b) Segment-wise (k>2) $X_{seg} \in \mathbb{R}^{(k \times H \times W \times C)} \rightarrow Y_{seg} \in \mathbb{R}^{(H \times W \times 2)}$

Intuition behind Segment-wise approach

- The model can benefit from the additional contextual information provided by the extra frames considered.
- In a setting where optical flow estimation and action recognition are performed in tandem, it is natural to consider segments, rather than pairs of frames.

Results: Optical Flow Estimation

Model		Params (M)	Sintel clean	Sintel final	KITTI15	
Conventional	EpicFlow [25]	-	2.27	3.56	9.27	
	FlowFields [1]	-	1.86	3.06	8.33	
Heavyweight CNN	FlowNetS [6]	38.68	4.50	5.45	-	
	FlowNet2 [17]	162.49	2.02	3.54	10.08	
Lightweight CNN	LiteFlowNet [16]	5.37	2.48	4.04	10.39	
	SPyNet [24]	1.20	4.12	5.57	_	
	Ours	2.39	2.13	2.51	7.83	

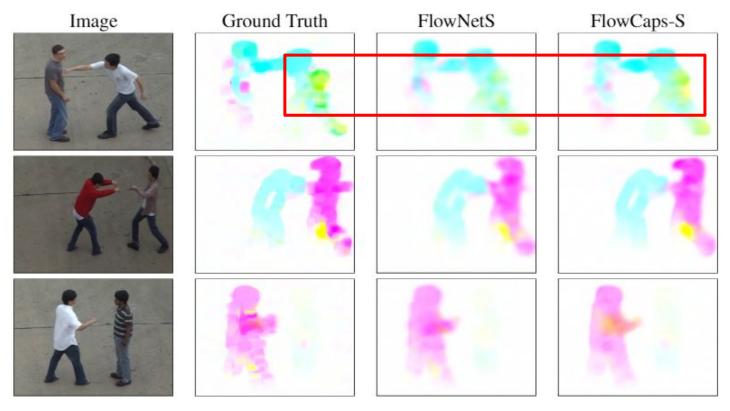
Results: Segment-wise vs Frame-wise

Model	KTH-I Frames		Sub UCF-I Frames		UTI-P Frames		
	Optical flow estimation performance in EPE						
	Frame	Seg.	Frame	Seg.	Frame	Seg.	
FlowNetS	1.1934	1.1355	2.3149	2.3079	0.4426	0.4265	
FlowCaps-S	1.1033	0.9384	2.2037	2.1930	0.3806	0.3672	
	Action classification performance						
FlowNetS	61.30%	66.30%	85.50%	89.70%	84.12%	83.08%	
FlowCaps-S	65.00%	72.50%	91.20%	92.30%	86.02%	85.93%	
GT	68.90%		92.60%		81.37%		

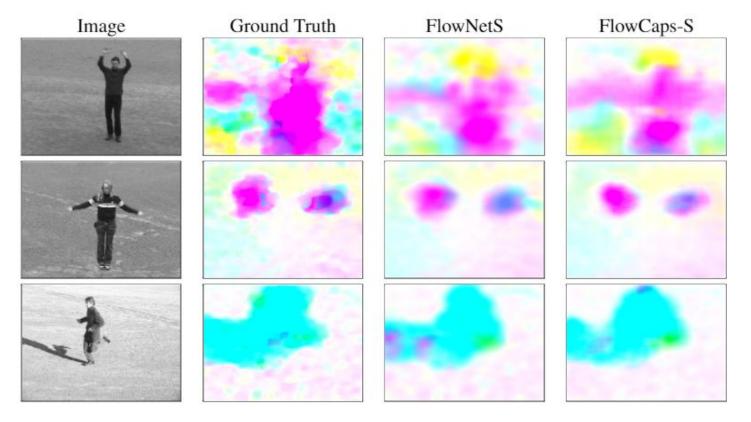
Results: Optical Flow Estimation and Action Recognition

Model	UCF I-Frames		UTI P-Frames		KTH I-Frames		JHMDB	
	test epe	action	test epe	action	test epe	action	test epe	action
GT		79.4%		81.37%	-	68.90%	-	51.49%
FlowNetS	1.53	55.58%	0.44	84.12%	1.19	61.30%	0.49	44.03%
LiteFlowNet		-	-	83.17%	-	59.79%	-	40.30%
SPyNet	1.37	65.78%	0.42	87.66%	0.95	64.30%	0.44	42.54%
Ours	1.49	64.49%	0.39	86.02%	1.10	65.00%	0.40	48.51%
Ours - Mod Loss*	1.41	-	0.35	-	1.04	-	0.26	-
Ours - Segment	1.40	65.16%	0.37	88.34%	0.93	72.50%	0.71	41.90%

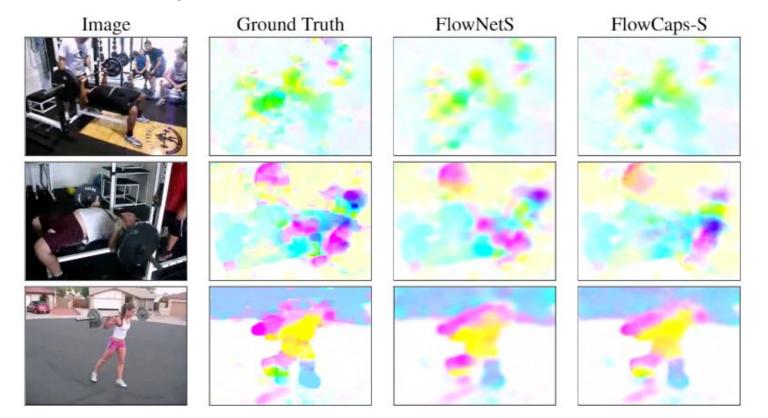
Optical Flow Estimation: UTI



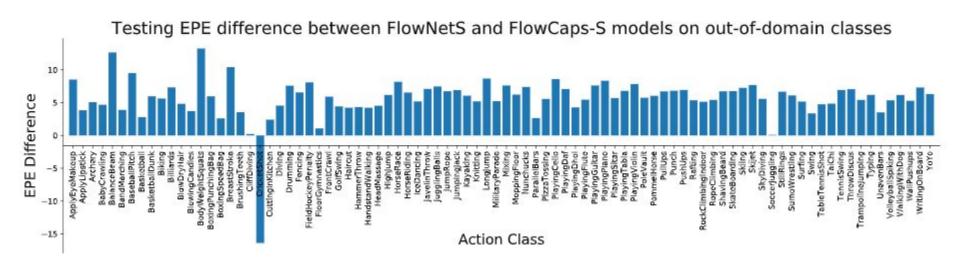
Optical Flow Estimation: KTH



Optical Flow Estimation: UCF

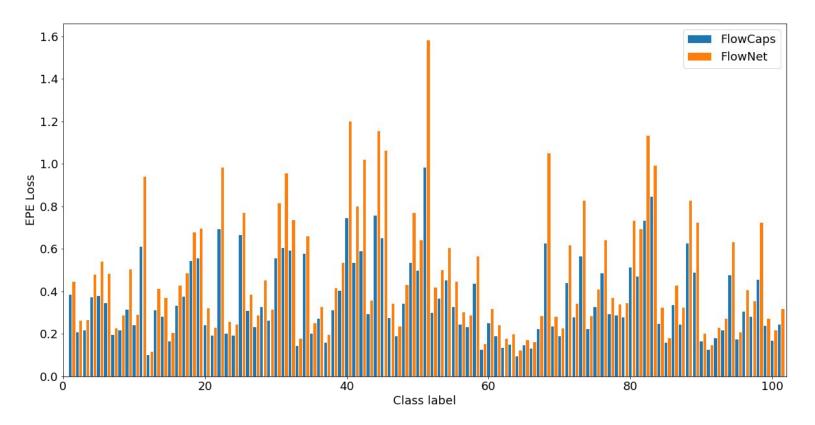


FlowCaps: Out-of-Domain Generalization

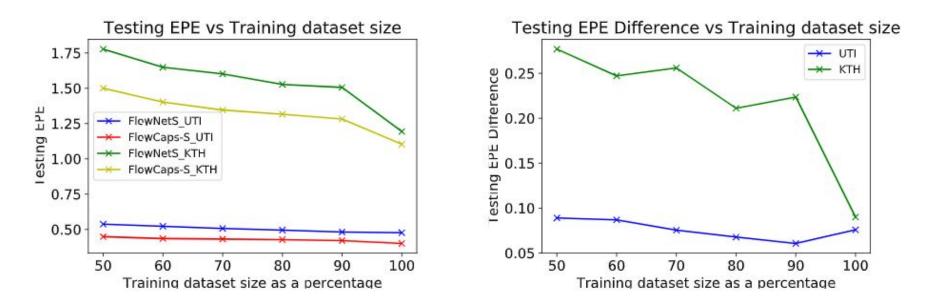


• We test on all the classes of UCF-101 except for classes with no videos containing more than 5 I-frames, and for the five classes considered for training, which yields 88 out-of-domain action classes.

FlowCaps: Out-of-Domain Generalization



FlowCaps: Training with few samples



• Lower the availability of training data, higher the relative generalization capability of FlowCaps-S.

Thank You!

For more information, please join the Q&A session for the paper ID: 975!

A copy of our paper can be found here:

